Generalized Hultman Numbers and Cycle Structures of Breakpoint Graphs
نویسندگان
چکیده
Genome rearrangements can be modeled as k-breaks, which break a genome at k positions and glue the resulting fragments in a new order. In particular, reversals, translocations, fusions, and fissions are modeled as 2-breaks, and transpositions are modeled as 3-breaks. Although k-break rearrangements for [Formula: see text] have not been observed in evolution, they are used in cancer genomics to model chromothripsis, a catastrophic event of multiple breakages happening simultaneously in a genome. It is known that the k-break distance between two genomes (i.e., the minimum number of k-breaks required to transform one genome into the other) can be computed in terms of cycle lengths in the breakpoint graph of these genomes. In this work, we address the combinatorial problem of enumerating genomes at a given k-break distance from a fixed unichromosomal genome. More generally, we enumerate genome pairs, whose breakpoint graph has a given distribution of cycle lengths. We further show how our enumeration can be used for uniform sampling of random genomes at a given k-break distance, and describe its connection to various combinatorial objects such as Bell polynomials.
منابع مشابه
Asteroidal number for some product graphs
The notion of Asteroidal triples was introduced by Lekkerkerker and Boland [6]. D.G.Corneil and others [2], Ekkehard Kohler [3] further investigated asteroidal triples. Walter generalized the concept of asteroidal triples to asteroidal sets [8]. Further study was carried out by Haiko Muller [4]. In this paper we find asteroidal numbers for Direct product of cycles, Direct product of path and cy...
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملStructural properties of fuzzy graphs
Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2017